Wind load calculation process in STAAD

 Applies To 
 Environment: N/A
 Area: Modeling Solutions
 Subarea: Loading
 Original Author:Abhisek Mandal, Bentley technical Support Group

 How is the wind load calculated/generated for a structure in STAAD.Pro ? What is the exposure factor calculated and how is it calculated?

The DEFINE WIND LOAD command may be used to define the parameters for automatic generation of wind loads on the structure. The user needs to define the intensity and corresponding heights along with the exposure factors. If the exposure factor is not defined, the program takes the default value as 1.0.

A value of 1.0 means that the wind force may be applied on the full influence area associated with the joints if they are also exposed to the wind load direction.
All loads and heights are in the current unit system. In the list of intensities, the first value of intensity (p1) acts from the ground level up to the first height. The second intensity (p2) acts in the global vertical direction between the first two heights (h1 and h2) and so on. The program assumes that the ground level has the lowest global vertical coordinate of any joint entered for the structure.

The exposure factor (e) is the fraction of the influence area associated with the joint(s) on which the load may act if it is also exposed to the wind load. Total load on a particular joint is calculated as follows.

JOINT LOAD = (Exposure Factor) x (Influence Area) x (Wind Intensity).

Exposure factor (User specified) = (Fraction of Influence Area) x (influence width for joint).

In STAAD.Pro 2002, the built-in wind load generation facility has been enhanced to allow the user to specify the actual panels of the building which are exposed to the wind. This user-level control will now allow the user to obtain a more accurate distribution of wind forces, especially when the exposed surface of the building lies in several vertical zones, each reset from the one below or the one above, in terms of the direction of wind force. Further, the basic algorithm for detecting the shape of the panels and the amount of load which should be calculated for the panel corners too has undergone significant improvements. The parameters for definition of the wind load types are described in Section 5.31.3 of the STAAD.PRO Technical Reference Manual. The relevant extracts from Section 5.32.12 of the STAAD.Pro Technical Reference Manual, where the method for applying wind loading in the form of a data in load cases has been explained, is provided below. Note that areas bounded by beam members (and ground), and exposed to the wind, are used to define loaded areas (plates and solids are ignored). The loads generated are applied only at the joints at vertices of the bounded areas. For example, in the following set of commands:

INTENSITY 0.1 0.12 HEIGHT 100 200
EXP 0.6 JOI 1 TO 25 BY 7 29 TO 37 BY 4 22 23
INT 0.1 0.12 HEIGHT 100 900
EXP 0.3 YR 0 500
SELF Y -1.0
WIND LOAD Z 1.2 TYPE 2 ZR 10 11

A minus sign indicates that suction occurs on the other side of the selected structure. If all of the members are selected and X (or Z) is used and the factor is positive, then the exposed surfaces facing in the -x (or -z) direction will be loaded in the positive x (or z) direction (normal wind in positive direction). If X and a negative factor is used, then the exposed surfaces facing in the +x direction will be loaded in the negative x direction (normal wind in negative direction). [If -X is entered and a negative factor, then the exposed surfaces facing in the -x direction will be loaded in the negative x direction (suction). If -X is entered and a positive factor, then the exposed surfaces facing in the +x direction will be loaded in the positive x direction (suction).] A member list or a range of coordinate values (in global system) may be used. All members which have both end coordinates within the range are assumed to be candidates for defining a surface which may be loaded if the surface is exposed to the wind. The loading will be in the form of joint loads (not member loads). 1, 2 or 3 ranges can be entered to form a "layer", "tube" or "box" for selecting members in the combined ranges. Use ranges to speed up the calculations on larger models.

It is advisable not to use the SET Z UP command in a model with wind load. A closed surface is generated by the program based on the members in the ranges above and their end joints. The area within this closed surface is determined and the share of this area (influence area) for each node in the list is then calculated. The individual bounded areas must be planar surfaces, to a close tolerance, or they will not be loaded. Hence, one should make sure that the members/joints that are exposed to the wind make up a closed surface (ground may form an edge of the closed surface). Without a proper closed surface, the area calculated for the region may be indeterminate and the joint force values may be erroneous. Consequently, the number of exposed joints should be at least 3.